Testing general relativity with black hole-pulsar binaries

Brian Seymour and Kent Yagi
Phys. Rev. D 98, 124007 – Published 10 December 2018

Abstract

Binary pulsars allow us to carry out precision tests of gravity and have placed stringent bounds on a broad class of theories beyond general relativity. Current and future radio telescopes, such as FAST, SKA, and MeerKAT, may find a new astrophysical system, a pulsar orbiting around a black hole, which will provide us a new source for probing gravity. In this paper, we systematically study the prospects of testing general relativity with such black hole-pulsar binaries. We begin by finding a mapping between generic non-Einsteinian parameters in the orbital decay rate and theoretical constants in various modified theories of gravity and then summarize this mapping with a ready-to-use list. Theories we study here include scalar-tensor theories, varying G theories, massive gravity theories, generic screening gravity and quadratic curvature-corrected theories. We next use simulated measurement accuracy of the orbital decay rate for black hole-pulsar binaries with FAST/SKA and derive projected upper bounds on the above generic non-Einsteinian parameters. We find that such bounds from black hole-pulsars can be stronger than those from neutron star-pulsar and neutron star-white dwarf binaries by a few orders of magnitude when the correction enters at negative post-Newtonian orders. By mapping such bounds on generic parameters to those on various modified theories of gravity, we find that one can constrain the amount of time variation in Newton’s constant G to be comparable to or slightly weaker than the current strongest bound from solar system experiments, though the former bounds are complementary to the latter since they probe different regime of gravity. We also study how well one can probe quadratic gravity from black hole quadrupole moment measurements of black hole-pulsars. We find that bounds on the parity-violating sector of quadratic gravity can be stronger than current bounds by six orders of magnitude. These results suggest that a new discovery of black hole-pulsars in the future will provide powerful ways to probe gravity further.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 1 August 2018

DOI:https://doi.org/10.1103/PhysRevD.98.124007

© 2018 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Brian Seymour and Kent Yagi

  • Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 12 — 15 December 2018

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×