• Open Access

Relaxation times for chiral transport phenomena and spin polarization in a strongly coupled plasma

Shiyong Li and Ho-Ung Yee
Phys. Rev. D 98, 056018 – Published 21 September 2018

Abstract

We compute the dynamical relaxation times for chiral transport phenomena in a strongly coupled regime using the AdS/CFT correspondence. These relaxation times can be a useful proxy for the dynamical timescale for achieving equilibrium spin polarization of quasiparticles in the presence of a magnetic field and fluid vorticity. We identify the Kubo relations for these relaxation times and clarify some previous issues regarding time dependence of the chiral vortical effect. We study the consequences of imposing time-reversal invariance on parity-odd thermal noise fluctuations that are related to chiral transport coefficients by the fluctuation-dissipation relation. We find that time-reversal invariance dictates the equality between some of the chiral transport coefficients as well as their relaxation times.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 7 June 2018

DOI:https://doi.org/10.1103/PhysRevD.98.056018

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
Nuclear Physics

Authors & Affiliations

Shiyong Li* and Ho-Ung Yee

  • Department of Physics, University of Illinois, Chicago, Illinois 60607, USA

  • *sli72@uic.edu
  • hyee@uic.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 98, Iss. 5 — 1 September 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×