• Open Access

Inhomogeneous Jacobi equation for minimal surfaces and perturbative change in holographic entanglement entropy

Avirup Ghosh and Rohit Mishra
Phys. Rev. D 97, 086012 – Published 20 April 2018

Abstract

The change in holographic entanglement entropy (HEE) for small fluctuations about pure anti-de Sitter (AdS) is obtained by a perturbative expansion of the area functional in terms of the change in the bulk metric and the embedded extremal surface. However it is known that change in the embedding appears at second order or higher. It was shown that these changes in the embedding can be calculated in the 2+1 dimensional case by solving a “generalized geodesic deviation equation.” We generalize this result to arbitrary dimensions by deriving an inhomogeneous form of the Jacobi equation for minimal surfaces. The solutions of this equation map a minimal surface in a given space time to a minimal surface in a space time which is a perturbation over the initial space time. Using this we perturbatively calculate the changes in HEE up to second order for boosted black brane like perturbations over AdS4.

  • Figure
  • Figure
  • Received 13 November 2017

DOI:https://doi.org/10.1103/PhysRevD.97.086012

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Avirup Ghosh*

  • Indian Institute of Technology, Gandhinagar, Gujarat 382355, India

Rohit Mishra

  • Theory Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India

  • *avirup.ghosh@iitgn.ac.in
  • rohit.mishra@saha.ac.in

See Also

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 97, Iss. 8 — 15 April 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×