• Open Access

Stop co-annihilation in the minimal supersymmetric standard model revisited

Aaron Pierce, Nausheen R. Shah, and Stefan Vogl
Phys. Rev. D 97, 023008 – Published 16 January 2018

Abstract

We reexamine the stop co-annihilation scenario of the minimal supersymmetric standard model, wherein a binolike lightest supersymmetric particle has a thermal relic density set by co-annihilations with a scalar partner of the top quark in the early universe. We concentrate on the case where only the top partner sector is relevant for the cosmology, and other particles are heavy. We discuss the cosmology with focus on low energy parameters and an emphasis on the implications of the measured Higgs boson mass and its properties. We find that the irreducible direct detection signal correlated with this cosmology is generically well below projected experimental sensitivity, and in most cases lies below the neutrino background. A larger, detectable, direct detection rate is possible, but is unrelated to the co-annihilation cosmology. LHC searches for compressed spectra are crucial for probing this scenario.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 17 July 2017

DOI:https://doi.org/10.1103/PhysRevD.97.023008

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & AstrophysicsParticles & Fields

Authors & Affiliations

Aaron Pierce1, Nausheen R. Shah2, and Stefan Vogl3

  • 1Michigan Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
  • 2Department of Physics & Astronomy, Wayne State University, Detroit, Michigan 48201, USA
  • 3Max Planck Institute for Nuclear Physics, 69117 Heidelberg, Germany

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 97, Iss. 2 — 15 January 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×