Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors

Salvatore Vitale and Matthew Evans
Phys. Rev. D 95, 064052 – Published 28 March 2017

Abstract

The two binary black hole (BBH) coalescences detected by LIGO, GW150914, and GW151226, were relatively nearby sources, with a redshift of 0.1. As the sensitivity of Advanced LIGO and Virgo increases in the next few years, they will eventually detect stellar-mass BBHs up to redshifts of 1. However, these are still relatively small distances compared with the size of the Universe, or with those encountered in most areas of astrophysics. In order to study BBH during the epoch of reionization, or black holes born from population III stars, more sensitive instruments are needed. Third-generation gravitational-wave detectors, such as the Einstein Telescope or the Cosmic Explorer, are already in an advanced R&D stage. These detectors will be roughly a factor of 10 more sensitive in strain than the current generation, and they will be able to detect BBH mergers beyond a redshift of 20. In this paper we quantify the precision with which these new facilities will be able to estimate the parameters of stellar-mass, heavy, and intermediate-mass BBHs as a function of their redshifts and the number of detectors. We show that having only two detectors would result in relatively poor estimates of black hole intrinsic masses: a situation improved with three or four instruments. Larger improvements are visible for the sky localization, although it is not yet clear whether BBHs are luminous in the electromagnetic or neutrino band. The measurement of the spin parameters, on the other hand, does not improve significantly as more detectors are added to the network since redshift information is not required to measure spin.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 20 October 2016

DOI:https://doi.org/10.1103/PhysRevD.95.064052

© 2017 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Salvatore Vitale and Matthew Evans

  • LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

See Also

Parameter estimation for heavy binary-black holes with networks of second-generation gravitational-wave detectors

Salvatore Vitale, Ryan Lynch, Vivien Raymond, Riccardo Sturani, John Veitch, and Philip Graff
Phys. Rev. D 95, 064053 (2017)

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 6 — 15 March 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×