Finite energy quantization on a topology changing spacetime

S. Krasnikov
Phys. Rev. D 94, 044055 – Published 26 August 2016

Abstract

The “trousers” spacetime is a pair of flat two-dimensional cylinders (“legs”) merging into a single one (“trunk”). In spite of its simplicity this spacetime has a few features (including, in particular, a naked singularity in the “crotch”) each of which is presumably unphysical, but for none of which a mechanism is known able to prevent its occurrence. Therefore, it is interesting and important to study the behavior of the quantum fields in such a space. Anderson and DeWitt were the first to consider the free scalar field in the trousers spacetime. They argued that the crotch singularity produces an infinitely bright flash, which was interpreted as evidence that the topology of space is dynamically preserved. Similar divergencies were later discovered by Manogue, Copeland, and Dray who used a more exotic quantization scheme. Later yet the same result obtained within a somewhat different approach led Sorkin to the conclusion that the topological transition in question is suppressed in quantum gravity. In this paper I show that the Anderson-DeWitt divergence is an artifact of their choice of the Fock space. By choosing a different one-particle Hilbert space one gets a quantum state in which the components of the stress-energy tensor (SET) are bounded in the frame of a free-falling observer.

  • Figure
  • Figure
  • Received 2 February 2016

DOI:https://doi.org/10.1103/PhysRevD.94.044055

© 2016 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & AstrophysicsParticles & Fields

Authors & Affiliations

S. Krasnikov

  • Central Astronomical Observatory at Pulkovo, St. Petersburg 196140, Russia

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 4 — 15 August 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×