Optimal design of calibration signals in space-borne gravitational wave detectors

Miquel Nofrarias, Nikolaos Karnesis, Ferran Gibert, Michele Armano, Heather Audley, Karsten Danzmann, Ingo Diepholz, Rita Dolesi, Luigi Ferraioli, Valerio Ferroni, Martin Hewitson, Mauro Hueller, Henri Inchauspe, Oliver Jennrich, Natalia Korsakova, Paul W. McNamara, Eric Plagnol, James I. Thorpe, Daniele Vetrugno, Stefano Vitale, Peter Wass, and William J. Weber
Phys. Rev. D 93, 102004 – Published 23 May 2016

Abstract

Future space-borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterization of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space-borne gravitational wave observatories. Here we propose a framework to derive the optimal signals—in terms of minimum parameter uncertainty—to be injected into these instruments during the calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 7 December 2015

DOI:https://doi.org/10.1103/PhysRevD.93.102004

© 2016 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Miquel Nofrarias1,*, Nikolaos Karnesis1, Ferran Gibert1, Michele Armano2, Heather Audley3, Karsten Danzmann3, Ingo Diepholz3, Rita Dolesi4, Luigi Ferraioli5, Valerio Ferroni4, Martin Hewitson3, Mauro Hueller4, Henri Inchauspe6, Oliver Jennrich7, Natalia Korsakova3, Paul W. McNamara7, Eric Plagnol6, James I. Thorpe8, Daniele Vetrugno4, Stefano Vitale4, Peter Wass9, and William J. Weber4

  • 1Institut de Ciències de l’Espai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Cerdanyola del Vallès, Spain
  • 2SRE-OD ESAC, European Space Agency, Camino bajo del Castillo s/n, Urbanización Villafranca del Castillo, Villanueva de la Canãda, 28692 Madrid, Spain
  • 3Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Universität Hannover, Callinstrasse 38, 30167 Hannover, Germany
  • 4Dipartimento di Fisica, Università di Trento and INFN, Gruppo Collegato di Trento, 38123 Povo, Trento, Italy
  • 5ETH Zürich, Institut für Geophysik, Sonneggstrasse 5, 8092 Zürich, Switzerland
  • 6APC, Université Paris Diderot, CNRS/IN2P3, CEA/Ifru, Observatoire de Paris, Sorbonne Paris Cité, 10 Rue A. Domon et L. Duquet, 75205 Paris Cedex 13, France
  • 7European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands
  • 8Gravitational Astrophysics Lab, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA
  • 9High Energy Physics Group, Imperial College London. Blackett Laboratory, Prince Consort Road, London SW7 2AZ, United Kingdom

  • *nofrarias@ice.cat

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 10 — 15 May 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×