Entanglement entropy across a deformed sphere

Márk Mezei
Phys. Rev. D 91, 045038 – Published 27 February 2015

Abstract

I study the entanglement entropy (EE) across a deformed sphere in conformal field theories (CFTs). I show that the sphere (locally) minimizes the universal term in EE among all shapes. In the work of Allais and Mezei [Phys. Rev. D 91, 046002 (2015)] it was derived that the sphere is a local extremum, by showing that the contribution linear in the deformation parameter is absent. In this paper I demonstrate that the quadratic contribution is positive and is controlled by the coefficient of the stress tensor two-point function, CT. Such a minimization result contextualizes the fruitful relation between the EE of a sphere and the number of degrees of freedom in field theory. I work with CFTs with gravitational duals, where all higher curvature couplings are turned on. These couplings parametrize conformal structures in stress tensor n-point functions; hence I show the result for infinitely many CFT examples.

  • Figure
  • Received 15 December 2014

DOI:https://doi.org/10.1103/PhysRevD.91.045038

© 2015 American Physical Society

Authors & Affiliations

Márk Mezei

  • Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 91, Iss. 4 — 15 February 2015

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×