A model independent approach to inelastic dark matter scattering

G. Barello, Spencer Chang, and Christopher A. Newby
Phys. Rev. D 90, 094027 – Published 19 November 2014

Abstract

We present a model independent analysis of inelastic dark matter transitions at direct detection experiments by modifying the elastic methodology of Fitzpatrick et al. By analyzing the kinematics of inelastic transitions, we find the relevant variables to describe these scattering processes, the primary change being a modification of the v variable. Taking this into account, we list the relevant scattering matrix elements and modify the Mathematica package of Anand et al. to calculate the necessary form factors. As an application, we determine the matrix elements of inelastic scattering for spin transitions between a fermion to fermion, scalar to vector, and scalar to scalar. Finally, we consider fits to the DAMA/LIBRA annual modulation signal for the magnetic inelastic dark matter scenario as well as a model independent scan over relativistic operators, constraining them with limits from direct detection experiments. In the magnetic inelastic dark matter scenario or if the dark matter couples through relativistic operators involving only protons, we find that experiments with xenon and germanium targets can have consistently small rates. However, limits from iodine experiments are much more constraining, leaving small regions of allowed parameter space. We point out that existing uncertainties in the iodine quenching factor strongly affects the constraints, motivating further study to pin down the correct values.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 23 September 2014

DOI:https://doi.org/10.1103/PhysRevD.90.094027

© 2014 American Physical Society

Authors & Affiliations

G. Barello, Spencer Chang, and Christopher A. Newby

  • Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 9 — 1 November 2014

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×