Conservative effect of the second-order gravitational self-force on quasicircular orbits in Schwarzschild spacetime

Adam Pound
Phys. Rev. D 90, 084039 – Published 21 October 2014

Abstract

A compact object moving on a quasicircular orbit about a Schwarzschild black hole gradually spirals inward due to the dissipative action of its gravitational self-force. But in addition to driving the inspiral, the self-force has a conservative piece. Within a second-order self-force formalism, I derive a second-order generalization of Detweiler’s redshift variable, which provides a gauge-invariant measure of conservative effects on quasicircular orbits. I sketch a frequency-domain numerical scheme for calculating this quantity. Once this scheme has been implemented, its results may be used to determine high-order terms in post-Newtonian theory and parameters in effective-one-body theory.

  • Figure
  • Received 6 April 2014

DOI:https://doi.org/10.1103/PhysRevD.90.084039

© 2014 American Physical Society

Authors & Affiliations

Adam Pound

  • Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 8 — 15 October 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×