Nonthermal histories and implications for structure formation

JiJi Fan, Ogan Özsoy, and Scott Watson
Phys. Rev. D 90, 043536 – Published 26 August 2014

Abstract

We examine the evolution of cosmological perturbations in a nonthermal inflationary history with a late-time matter domination period prior to big bang nucleosynthesis. Such a cosmology could arise naturally in the well-motivated moduli scenario in the context of supersymmetry (SUSY)—in particular in models of split SUSY. Subhorizon dark matter perturbations grow linearly during the matter dominated phase before reheating and can lead to an enhancement in the growth of substructure on small scales, even in the presence of dark matter annihilations. This suggests that a new scale (the horizon size at reheating) could be important for determining the primordial matter power spectrum. However, we find that in many nonthermal models free-streaming effects or kinetic decoupling after reheating can completely erase the enhancement leading to small-scale structures. In particular, in the moduli scenario with wino or Higgsino dark matter we find that the dark matter particles produced from moduli decays would thermalize with radiation and kinetically decouple below the reheating temperature. Thus, the growth of dark matter perturbations is not sustained, and the predictions for the matter power spectrum are similar to a standard thermal history. We comment on possible exceptions, but these appear difficult to realize within standard moduli scenarios. We conclude that although enhanced structure does not provide a new probe for investigating the cosmic dark ages within these models, it does suggest that nonthermal histories offer a robust alternative to a strictly thermal post inflationary history.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 17 June 2014

DOI:https://doi.org/10.1103/PhysRevD.90.043536

© 2014 American Physical Society

Authors & Affiliations

JiJi Fan1, Ogan Özsoy1, and Scott Watson1,2

  • 1Department of Physics, Syracuse University, Syracuse, New York 13244, USA
  • 2Kavli Institute for Theoretical Physics, Santa Barbara, California 93106, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 4 — 15 August 2014

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×