Black hole firewalls, smoke and mirrors

Ram Brustein and A. J. M. Medved
Phys. Rev. D 90, 024040 – Published 16 July 2014

Abstract

The radiation emitted by a black hole (BH) during its evaporation has to have some degree of quantum coherence to accommodate a unitary time evolution. We parametrize the degree of coherence by the number of coherently emitted particles Ncoh and show that it is severely constrained by the equivalence principle. We discuss, in this context, the fate of a shell of matter that falls into a Schwarzschild BH. Two points of view are considered: that of a stationary external observer and that of the shell itself. From the perspective of the shell, the near-horizon region has an energy density proportional to Ncoh2 in Schwarzschild units. So, if Ncoh is parametrically larger than the square root of the BH entropy SBH1/2, a firewall or more generally a “wall of smoke” forms and the equivalence principle is violated while the BH is still semiclassical. To have a degree of coherence that is parametrically smaller than SBH1/2, one has to introduce a new sub-Planckian gravitational length scale, which likely also violates the equivalence principle. And so our previously proposed model which has Ncoh=SBH1/2 is singled out. From the external-observer perspective, we find that the time it takes for the information about the state of the shell to get re-emitted from the BH is inversely proportional to Ncoh. When the rate of information release becomes of order unity, the semiclassical approximation starts to break down and the BH becomes a perfect reflecting information mirror.

  • Received 25 January 2014

DOI:https://doi.org/10.1103/PhysRevD.90.024040

© 2014 American Physical Society

Authors & Affiliations

Ram Brustein1,* and A. J. M. Medved2,†

  • 1Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
  • 2Department of Physics & Electronics, Rhodes University, Grahamstown 6140, South Africa

  • *ramyb@bgu.ac.il
  • j.medved@ru.ac.za

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 2 — 15 July 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×