Cosmology with galaxy clusters: Systematic effects in the halo mass function

Aseem Paranjape
Phys. Rev. D 90, 023520 – Published 14 July 2014

Abstract

We investigate potential systematic effects in constraining the amplitude of primordial fluctuations σ8 arising from the choice of halo mass function in the likelihood analysis of current and upcoming galaxy cluster surveys. We study the widely used N-body simulation fit of Tinker et al. (T08) and, as an alternative, the recently proposed analytical model of excursion set peaks (ESP). We first assess the relative bias between these prescriptions when constraining σ8 by sampling the ESP mass function to generate mock catalogs and using the T08 fit to analyze them, for various choices of survey selection threshold, mass definition and statistical priors. To assess the level of absolute bias in each prescription, we then repeat the analysis on dark matter halo catalogs in N-body simulations designed to mimic the mass distribution in the current data release of Planck Sunyaev-Zel’dovich clusters. This N-body analysis shows that using the T08 fit without accounting for the scatter introduced when converting between mass definitions (alternatively, the scatter induced by errors on the parameters of the fit) can systematically overestimate the value of σ8 by as much as 2σ for current data, while analyses that account for this scatter should be close to unbiased in σ8. With an increased number of objects as expected in upcoming data releases, regardless of accounting for scatter, the T08 fit could overestimate the value of σ8 by 1.5σ. The ESP mass function leads to systematically more biased but comparable results. A strength of the ESP model is its natural prediction of a weak nonuniversality in the mass function which closely tracks the one measured in simulations and described by the T08 fit. We suggest that it might now be prudent to build new unbiased ESP-based fitting functions for use with the larger data sets of the near future.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 17 March 2014

DOI:https://doi.org/10.1103/PhysRevD.90.023520

© 2014 American Physical Society

Authors & Affiliations

Aseem Paranjape*

  • Institute for Astronomy, Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH 8093 Zürich, Switzerland

  • *aseemp@phys.ethz.ch

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 2 — 15 July 2014

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×