Vacuum birefringence by Compton backscattering through a strong field

Tobias N. Wistisen and Ulrik I. Uggerhøj
Phys. Rev. D 88, 053009 – Published 17 September 2013

Abstract

We propose a novel scheme to measure nonlinear effects in electrodynamics arising from QED corrections. Our theoretical starting point is the Heisenberg-Euler-Schwinger effective Lagrangian which predicts that a vacuum with a strong static electromagnetic field turns birefringent. We propose to employ a pulsed laser to create Compton backscattered photons off a high energy electron beam. These photons will pass through a strong static magnetic field, which according to the QED prediction changes the state of polarization of the radiation—an effect proportional to the photon energy. This change will be measured by using an aligned single crystal, since a large difference in the pair production cross sections at high energies can be achieved with proper orientation of the crystal. As an example we will consider the machine, LHeC, under consideration at CERN as the source of these electrons, and an LHC dipole magnet as the source of the strong static magnetic field. In the proposed experimental setup the birefringence effect will be manifested in a difference in the number of pairs created in the polarizer crystal as the initial laser light has a varying state of polarization, achieved with a rotating quarter wave plate. This will be seen as a clear peak in the Fourier transform spectrum of the pair-production rate signal, which can be obtained with 3 hours of measurement. We also comment on the sensitivity of the experiment, to the existence of an axion, a hypothetical spin-0 particle that couples to two photons.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 18 July 2013

DOI:https://doi.org/10.1103/PhysRevD.88.053009

© 2013 American Physical Society

Authors & Affiliations

Tobias N. Wistisen and Ulrik I. Uggerhøj

  • Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 5 — 1 September 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×