Rømer time-delay determination of the gravitational-wave propagation speed

Lee Samuel Finn and Joseph D. Romano
Phys. Rev. D 88, 022001 – Published 9 July 2013

Abstract

In 1676 Olaus Rømer presented the first observational evidence for a finite light velocity cem. He formed his estimate by attributing the periodically varying discrepancy between the observed and expected occultation times of the Galilean satellite Io by its planetary host Jupiter to the time it takes light to cross Earth’s orbital diameter. Given a stable celestial clock that can be observed in gravitational waves the same principle can be used to measure the propagation speed cgw of gravitational radiation. Space-based “LISA”-like detectors will, and terrestrial LIGO-like detectors may, observe such clocks and thus be capable of directly measuring the propagation velocity of gravitational waves. In the case of space-based detectors the clocks will be galactic close white-dwarf binary systems; in the case of terrestrial detectors, the most likely candidate clock is the periodic gravitational radiation from a rapidly rotating nonaxisymmetric neutron star. Here we evaluate the accuracy that may be expected of such a Rømer-type measurement of cgw by foreseeable future space-based and terrestrial detectors. For space-based, LISA-like detectors, periodic sources are plentiful: by the end of the first year of scientific operations a LISA-like detector will have measured cgw to better than a part in a thousand. Periodic sources may not be accessible in terrestrial detectors available to us in the foreseeable future; however, if such a source is detected then with a year of observations we could measure cgw to better than a part in a million.

  • Figure
  • Received 1 April 2013

DOI:https://doi.org/10.1103/PhysRevD.88.022001

© 2013 American Physical Society

Authors & Affiliations

Lee Samuel Finn*

  • Department of Physics, The Pennsylvania State University, State College, Pennsylvania 16802-6300, USA and Department of Astronomy and Astrophysics, The Pennsylvania State University, State College, Pennsylvania 16802-6300, USA

Joseph D. Romano

  • Department of Physics and Astronomy, Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, Texas 78520, USA

  • *LSFinn@psu.edu
  • joe@phys.utb.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 2 — 15 July 2013

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×