Cosmological inflation and the quantum measurement problem

Jérôme Martin, Vincent Vennin, and Patrick Peter
Phys. Rev. D 86, 103524 – Published 26 November 2012

Abstract

According to cosmological inflation, the inhomogeneities in our Universe are of quantum-mechanical origin. This scenario is phenomenologically very appealing as it solves the puzzles of the standard hot big bang model and naturally explains why the spectrum of cosmological perturbations is almost scale invariant. It is also an ideal playground to discuss deep questions among which is the quantum measurement problem in a cosmological context. Although the large squeezing of the quantum state of the perturbations and the phenomenon of decoherence explain many aspects of the quantum-to-classical transition, it remains to understand how a specific outcome can be produced in the early Universe, in the absence of any observer. The continuous spontaneous localization (CSL) approach to quantum mechanics attempts to solve the quantum measurement question in a general context. In this framework, the wave function collapse is caused by adding new nonlinear and stochastic terms to the Schrödinger equation. In this paper, we apply this theory to inflation, which amounts to solving the CSL parametric oscillator case. We choose the wave function collapse to occur on an eigenstate of the Mukhanov-Sasaki variable and discuss the corresponding modified Schrödinger equation. Then, we compute the power spectrum of the perturbations and show that it acquires a universal shape with two branches, one which remains scale invariant and one with nS=4, a spectral index in obvious contradiction with the cosmic microwave background anisotropy observations. The requirement that the non-scale-invariant part be outside the observational window puts stringent constraints on the parameter controlling the deviations from ordinary quantum mechanics. Due to the absence of a CSL amplification mechanism in field theory, this also has the consequence that the collapse mechanism of the inflationary fluctuations is not efficient. Then, we determine the collapse time. On small scales the collapse is almost instantaneous, and we recover exactly the behavior of the CSL harmonic oscillator (a case for which we present new results), whereas, on large scales, we find that the collapse is delayed and can take several e-folds to happen. We conclude that recovering the observational successes of inflation and, at the same time, reaching a satisfactory resolution of the inflationary “macro-objectification” issue seems problematic in the framework considered here. This work also provides a complete solution to the CSL parametric oscillator system, a topic we suggest could play a very important role to further constrain the CSL parameters. Our results illustrate the remarkable power of inflation and cosmology to constrain new physics.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 17 July 2012

DOI:https://doi.org/10.1103/PhysRevD.86.103524

© 2012 American Physical Society

Authors & Affiliations

Jérôme Martin*, Vincent Vennin, and Patrick Peter

  • Institut d’Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98 bis boulevard Arago, 75014 Paris, France

  • *jmartin@iap.fr
  • vennin@iap.fr
  • peter@iap.fr

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 86, Iss. 10 — 15 November 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×