Gravitational radiation reaction and second-order perturbation theory

Steven Detweiler
Phys. Rev. D 85, 044048 – Published 22 February 2012

Abstract

A point particle of small mass m moves in free fall through a background vacuum spacetime metric gab0 and creates a first-order metric perturbation hab1ret that diverges at the particle. Elementary expressions are known for the singular m/r part of hab1ret and for its tidal distortion determined by the Riemann tensor in a neighborhood of m. Subtracting this singular part hab1S from hab1ret leaves a regular remainder hab1R. The self-force on the particle from its own gravitational field adjusts the world line at O(m) to be a geodesic of gab0+hab1R. The generalization of this description to second-order perturbations is developed and results in a wave equation governing the second-order hab2ret with a source that has an O(m2) contribution from the stress-energy tensor of m added to a term quadratic in hab1ret. Second-order self-force analysis is similar to that at first order: The second-order singular field hab2S subtracted from hab2ret yields the regular remainder hab2R, and the second-order self-force is then revealed as geodesic motion of m in the metric gab0+h1R+h2R.

  • Received 11 July 2011

DOI:https://doi.org/10.1103/PhysRevD.85.044048

© 2012 American Physical Society

Authors & Affiliations

Steven Detweiler

  • Department of Physics, University of Florida, Gainesville, Florida 32611-8440, USA*

  • *det@ufl.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 85, Iss. 4 — 15 February 2012

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×