Black hole perturbation in parity violating gravitational theories

Hayato Motohashi and Teruaki Suyama
Phys. Rev. D 84, 084041 – Published 19 October 2011

Abstract

We study linear perturbations around static, spherically symmetric spacetimes in f(R,C) gravitational theories whose Lagrangians depend on the Ricci scalar R and the parity violating Chern-Simons term C. By an explicit construction, we show that the Hamiltonian for the perturbation variables is not bounded from below, suggesting that such a background spacetime is unstable against perturbations. This gives a strong limit on a phenomenological gravitational model which violates parity. We also show that either R=const or 2fRC=0 is a necessary and sufficient condition for the stability. We then implement in detail the perturbation analysis for such theories which satisfy the stability conditions. For 2, where is the usual integer for the multipole expansion, the number of propagating modes is three, one from the odd and the other two from the even, all of which propagate at the speed of light. Unlike in the case of f(R) theories, these modes are coupled to each other, which can be used as a distinctive feature to test the parity violating theories from observations. The no-ghost conditions and no-tachyon conditions are the same as those in f(R) theories. For the dipole perturbations, the odd and the even modes completely decouple. The odd mode gives a slowly rotating black hole solution whose metric is linearized in its angular momentum. We provide an integral expression of this solution. On the other hand, the even mode propagates at the speed of light. For the monopole perturbation, in addition to a mode which simply shifts the mass of the background black hole, there also exists one even mode that propagates at the speed of light.

  • Received 4 August 2011

DOI:https://doi.org/10.1103/PhysRevD.84.084041

© 2011 American Physical Society

Authors & Affiliations

Hayato Motohashi1,2 and Teruaki Suyama2

  • 1Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
  • 2Research Center for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 8 — 15 October 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×