Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem

Tim Johannsen and Dimitrios Psaltis
Phys. Rev. D 83, 124015 – Published 7 June 2011

Abstract

According to the no-hair theorem, astrophysical black holes are uniquely characterized by their masses and spins and are described by the Kerr metric. Several parametric deviations from the Kerr metric have been suggested to study observational signatures in both the electromagnetic and gravitational-wave spectra that differ from the expected Kerr signals. Because of the no-hair theorem, however, such spacetimes cannot be regular everywhere outside the event horizons, if they are solutions to the Einstein field equations; they are often characterized by naked singularities or closed timelike loops in the regions of the spacetime that are accessible to an external observer. For observational tests of the no-hair theorem that involve phenomena in the vicinity of the circular photon orbit or the innermost stable circular orbit around a black hole, these pathologies limit the applicability of the metrics only to compact objects that do not spin rapidly. In this paper, we construct a Kerr-like metric which depends on a set of free parameters in addition to its mass and spin and which is regular everywhere outside of the event horizon. We derive expressions for the energy and angular momentum of a particle on a circular equatorial orbit around the black hole and compute the locations of the innermost stable circular orbit and the circular photon orbit. We demonstrate that these orbits change significantly for even moderate deviations from the Kerr metric. The properties of our metric make it an ideally suited spacetime to carry out strong-field tests of the no-hair theorem in the electromagnetic spectrum using the properties of accretion flows around astrophysical black holes of arbitrary spin.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 21 March 2011

DOI:https://doi.org/10.1103/PhysRevD.83.124015

© 2011 American Physical Society

Authors & Affiliations

Tim Johannsen and Dimitrios Psaltis

  • Physics and Astronomy Departments, University of Arizona, 1118 E. 4th Street, Tucson, Arizona 85721, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 83, Iss. 12 — 15 June 2011

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×