Ideal gas in a strong gravitational field: Area dependence of entropy

Sanved Kolekar and T. Padmanabhan
Phys. Rev. D 83, 064034 – Published 24 March 2011

Abstract

We study the thermodynamic parameters like entropy, energy etc. of a box of gas made up of indistinguishable particles when the box is kept in various static background spacetimes having a horizon. We compute the thermodynamic variables using both statistical mechanics as well as by solving the hydrodynamical equations for the system. When the box is far away from the horizon, the entropy of the gas depends on the volume of the box except for small corrections due to background geometry. As the box is moved closer to the horizon with one (leading) edge of the box at about Planck length (Lp) away from the horizon, the entropy shows an area dependence rather than a volume dependence. More precisely, it depends on a small volume ALp/2 of the box, up to an order O(Lp/K)2 where A is the transverse area of the box and K is the (proper) longitudinal size of the box related to the distance between leading and trailing edge in the vertical direction (i.e. in the direction of the gravitational field). Thus the contribution to the entropy comes from only a fraction O(Lp/K) of the matter degrees of freedom and the rest are suppressed when the box approaches the horizon. Near the horizon all the thermodynamical quantities behave as though the box of gas has a volume ALp/2 and is kept in a Minkowski spacetime. These effects are: (i) purely kinematic in their origin and are independent of the spacetime curvature (in the sense that the Rindler approximation of the metric near the horizon can reproduce the results) and (ii) observer dependent. When the equilibrium temperature of the gas is taken to be equal to the horizon temperature, we get the familiar A/Lp2 dependence in the expression for entropy. All these results hold in a D+1 dimensional spherically symmetric spacetime. The analysis based on methods of statistical mechanics and the one based on thermodynamics applied to the gas treated as a fluid in static geometry, lead to the same results showing the consistency. The implications are discussed.

  • Received 24 January 2011

DOI:https://doi.org/10.1103/PhysRevD.83.064034

© 2011 American Physical Society

Authors & Affiliations

Sanved Kolekar* and T. Padmanabhan

  • IUCAA, Pune University Campus, Ganeshkhind, Pune 411007, India

  • *sanved@iucaa.ernet.in
  • paddy@iucaa.ernet.in

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 83, Iss. 6 — 15 March 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×