Gravity-Yang-Mills-Higgs unification by enlarging the gauge group

Alexander Torres-Gomez and Kirill Krasnov
Phys. Rev. D 81, 085003 – Published 5 April 2010

Abstract

We revisit an old idea that gravity can be unified with Yang-Mills theory by enlarging the gauge group of gravity formulated as gauge theory. Our starting point is an action that describes a generally covariant gauge theory for a group G. The Minkowski background breaks the gauge group by selecting in it a preferred gravitational SU(2) subgroup. We expand the action around this background and find the spectrum of linearized theory to consist of the usual gravitons plus Yang-Mills fields charged under the centralizer of the SU(2) in G. In addition, there is a set of Higgs fields that are charged both under the gravitational and Yang-Mills subgroups. These fields are generically massive and interact with both gravity and the Yang-Mills sector in the standard way. The arising interaction of the Yang-Mills sector with gravity is also standard. Parameters such as the Yang-Mills coupling constant and Higgs mass arise from the potential function defining the theory. Both are realistic in the sense explained in the paper.

  • Received 19 November 2009

DOI:https://doi.org/10.1103/PhysRevD.81.085003

©2010 American Physical Society

Authors & Affiliations

Alexander Torres-Gomez and Kirill Krasnov

  • School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 81, Iss. 8 — 15 April 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×