Rigorous derivation of electromagnetic self-force

Samuel E. Gralla, Abraham I. Harte, and Robert M. Wald
Phys. Rev. D 80, 024031 – Published 23 July 2009

Abstract

During the past century, there has been considerable discussion and analysis of the motion of a point charge in an external electromagnetic field in special relativity, taking into account “self-force” effects due to the particle’s own electromagnetic field. We analyze the issue of “particle motion” in classical electromagnetism in a rigorous and systematic way by considering a one-parameter family of solutions to the coupled Maxwell and matter equations corresponding to having a body whose charge-current density Ja(λ) and stress-energy tensor Tab(λ) scale to zero size in an asymptotically self-similar manner about a worldline γ as λ0. In this limit, the charge, q, and total mass, m, of the body go to zero, and q/m goes to a well-defined limit. The Maxwell field Fab(λ) is assumed to be the retarded solution associated with Ja(λ) plus a homogeneous solution (the “external field”) that varies smoothly with λ. We prove that the worldline γ must be a solution to the Lorentz force equations of motion in the external field Fab(λ=0). We then obtain self-force, dipole forces, and spin force as first-order perturbative corrections to the center-of-mass motion of the body. We believe that this is the first rigorous derivation of the complete first-order correction to Lorentz force motion. We also address the issue of obtaining a self-consistent perturbative equation of motion associated with our perturbative result, and argue that the self-force equations of motion that have previously been written down in conjunction with the “reduction of order” procedure should provide accurate equations of motion for a sufficiently small charged body with negligible dipole moments and spin. (There is no corresponding justification for the non-reduced-order equations.) We restrict consideration in this paper to classical electrodynamics in flat spacetime, but there should be no difficulty in extending our results to the motion of a charged body in an arbitrary globally hyperbolic curved spacetime.

  • Received 14 May 2009

DOI:https://doi.org/10.1103/PhysRevD.80.024031

©2009 American Physical Society

Authors & Affiliations

Samuel E. Gralla, Abraham I. Harte, and Robert M. Wald

  • Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 80, Iss. 2 — 15 July 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×