Characterizing the gravitational wave signature from cosmic string cusps

Joey Shapiro Key and Neil J. Cornish
Phys. Rev. D 79, 043014 – Published 26 February 2009

Abstract

Cosmic strings are predicted to form kinks that travel along the string, and cusps, where a small region of the string moves at close to the speed of light. These disturbances are radiated away as highly beamed gravitational waves that produce a burst like pulse as the cone of emission sweeps past an observer. Gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA) and the Laser Interferometer Gravitational wave Observatory (LIGO) will be capable of detecting these bursts for a wide class of string models. Such a detection would illuminate the fields of string theory, cosmology, and relativity. Here, we develop template based Markov chain Monte Carlo (MCMC) techniques that can efficiently detect and characterize the signals from cosmic string cusps. We estimate how well the signal parameters can be recovered by the advanced LIGO-Virgo network and the LISA detector using a combination of MCMC and Fisher matrix techniques. We also consider joint detections by the ground- and space-based instruments. We show that a parallel tempered MCMC approach can detect and characterize the signals from cosmic string cusps, and we demonstrate the utility of this approach on simulated data from the third round of mock LISA data challenges.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 10 December 2008

DOI:https://doi.org/10.1103/PhysRevD.79.043014

©2009 American Physical Society

Authors & Affiliations

Joey Shapiro Key and Neil J. Cornish

  • Department of Physics, Montana State University, Bozeman, Montana 59717, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 4 — 15 February 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×