m-mode regularization scheme for the self-force in Kerr spacetime

Leor Barack, Darren A. Golbourn, and Norichika Sago
Phys. Rev. D 76, 124036 – Published 27 December 2007

Abstract

We present a new, simple method for calculating the scalar, electromagnetic, and gravitational self-forces acting on particles in orbit around a Kerr black hole. The standard “mode-sum regularization” approach for self-force calculations relies on a decomposition of the full (retarded) perturbation field into multipole modes, followed by the application of a certain mode-by-mode regularization procedure. In recent years several groups have developed numerical codes for calculating black hole perturbations directly in 2+1 dimensions (i.e., decomposing the azimuthal dependence into m-modes, but refraining from a full multipole decomposition). Here we formulate a practical scheme for constructing the self-force directly from the 2+1-dimensional m-modes. While the standard mode-sum method is serving well in calculations of the self-force in Schwarzschild geometry, the new scheme should allow a more efficient treatment of the Kerr problem.

  • Received 28 September 2007

DOI:https://doi.org/10.1103/PhysRevD.76.124036

©2007 American Physical Society

Authors & Affiliations

Leor Barack, Darren A. Golbourn, and Norichika Sago

  • School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 76, Iss. 12 — 15 December 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×