Electroweak baryogenesis and standard model CP violation

Patrick Huet and Eric Sather
Phys. Rev. D 51, 379 – Published 15 January 1995
PDFExport Citation

Abstract

We analyze the mechanism of electroweak baryogenesis proposed by Farrar and Shaposhnikov in which the phase of the CKM mixing matrix is the only source of CP violation. This mechanism is based on a phase separation of baryons via the scattering of quasiparticles by the wall of an expanding bubble produced at the electroweak phase transition. In agreement with the recent work of Gavela, Hernández, Orloff, and Pène, we conclude the QCD damping effects reduce the asymmetry produced to a negligible amount. We interpret the damping as quantum decoherence. We compute the asymmetry analytically. Our analysis reflects the observation that only a thin, outer layer of the bubble contributes to the coherent scattering of the quasiparticles. The generality of our arguments rules out any mechanism of electroweak baryogenesis that does not make use of a new source of CP violation.

  • Received 4 May 1994

DOI:https://doi.org/10.1103/PhysRevD.51.379

©1995 American Physical Society

Authors & Affiliations

Patrick Huet and Eric Sather

  • Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

References (Subscription Required)

Click to Expand
Issue

Vol. 51, Iss. 2 — 15 January 1995

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×