• Open Access

Is the effective potential effective for dynamics?

Nathan Herring, Shuyang Cao, and Daniel Boyanovsky
Phys. Rev. D 109, 105021 – Published 15 May 2024

Abstract

We critically examine the applicability of the effective potential within dynamical situations and find, in short, that the answer is negative. An important caveat of the use of an effective potential in dynamical equations of motion is an explicit violation of energy conservation. An adiabatic effective potential is introduced in a consistent quasistatic approximation, and its narrow regime of validity is discussed. Two ubiquitous instances in which even the adiabatic effective potential is not valid in dynamics are studied in detail: parametric amplification in the case of oscillating mean fields, and spinodal instabilities associated with spontaneous symmetry breaking. In both cases profuse particle production is directly linked to the failure of the effective potential to describe the dynamics. We introduce a consistent, renormalized, energy conserving dynamical framework that is amenable to numerical implementation. Energy conservation leads to the emergence of asymptotic highly excited, entangled stationary states from the dynamical evolution. As a corollary, decoherence via dephasing of the density matrix in the adiabatic basis is argued to lead to an emergent entropy, formally equivalent to the entanglement entropy. The results suggest novel characterization of asymptotic equilibrium states in terms of order parameter vs energy density.

  • Figure
  • Figure
  • Figure
  • Received 11 March 2024
  • Accepted 25 April 2024

DOI:https://doi.org/10.1103/PhysRevD.109.105021

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Nathan Herring1,*, Shuyang Cao2,†, and Daniel Boyanovsky2,‡

  • 1Department of Physics, Hillsdale College, Hillsdale, Michigan 49242, USA
  • 2Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

  • *nherring@hillsdale.edu
  • shuyang.cao@pitt.edu
  • boyan@pitt.edu

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 109, Iss. 10 — 15 May 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×