• Open Access

Numerical results on quantum energy inequalities in integrable models at the two-particle level

Jan Mandrysch
Phys. Rev. D 109, 085022 – Published 30 April 2024

Abstract

In this article, we study the impact of self-interaction and multiparticle states on sustaining negative energies in relativistic quantum systems. For physically reasonable models, one usually requires bounds on both magnitude and duration of the accumulation of negative energy, typically given in form of a quantum energy inequality (QEI). Such bounds have applications in semiclassical gravity where they exclude exotic spacetime geometries and imply the formation of singularities. The essence of this article is a novel numerical method for determining optimal QEI bounds at the one- or two-particle level, extending previous work focused on the one-particle case and overcoming a new type of technical challenge associated with the two-particle scenario. Our method is tailored for integrable models in quantum field theory constructed via the S-matrix boostrap. Applying the method to a representative model, the sinh-Gordon model, we confirm self-interaction as the source of negative energy, with stronger interactions leading to more pronounced negativities. Moreover, we establish the validity of QEIs and the averaged weak energy condition (AWEC) at the one- and two-particle level. Lastly, we identify a constrained one-parameter class of nonminimal stress tensor expressions satisfying QEIs at both levels, with more stringent constraints emerging from the QEI bounds at the two-particle level.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 10 January 2024
  • Accepted 26 March 2024

DOI:https://doi.org/10.1103/PhysRevD.109.085022

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Particles & FieldsGravitation, Cosmology & Astrophysics

Authors & Affiliations

Jan Mandrysch*

  • Department Mathematics, Friedrich-Alexander University Erlangen, Germany and Institut for Theoretical Physics, Leipzig University, Germany

  • *jan.mandrysch@fau.de

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 109, Iss. 8 — 15 April 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×