• Open Access

Pulsar timing array source ensembles

Bruce Allen and Serena Valtolina
Phys. Rev. D 109, 083038 – Published 30 April 2024

Abstract

The stochastic gravitational wave background for pulsar timing arrays is often modeled by a Gaussian ensemble which is isotropic and unpolarized. However, the Universe has a discrete set of polarized gravitational wave sources at specific sky locations. Can we trust that the Gaussian ensemble is an accurate description? To investigate this, we explicitly construct an ensemble containing N individual binary sources with circular orbits. The orbital inclination angles are randomly distributed, hence the individual sources are elliptically polarized. We then compute the first two moments of the Hellings and Downs correlation, as well as the pulsar-averaged correlation mean and (cosmic) variance. The first moments are the same as for a previously studied ensemble of circularly polarized sources. However, the second moments, and hence the variances, are different for the two ensembles. While neither discrete source model is exactly described by a Gaussian ensemble, we show that in the limit of large N, the differences are small.

  • Received 30 January 2024
  • Accepted 22 February 2024

DOI:https://doi.org/10.1103/PhysRevD.109.083038

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Open access publication funded by the Max Planck Society.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & Astrophysics

Authors & Affiliations

Bruce Allen* and Serena Valtolina

  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Leibniz Universität Hannover, Callinstrasse 38, D-30167, Hannover, Germany

  • *bruce.allen@aei.mpg.de
  • serena.valtolina@aei.mpg.de

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 109, Iss. 8 — 15 April 2024

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×