Magnetized matter effects on dilaton photon mixing

Ankur Chaubey, Manoj K. Jaiswal, and Avijit K. Ganguly
Phys. Rev. D 107, 023008 – Published 13 January 2023

Abstract

Dilatons [ϕ(x)] are a class of bosonic scalar particles associated with scaling symmetry and its compensation (under the violations of the same). They are capable of interacting gravitationally with other massive bodies. As they have coupling to two photons (γ), they are (also) capable of decaying to the two photons. However, the decay time is long and that makes them a good candidate for dark matter. Furthermore due to two photon coupling, they can produce optical signatures in a magnetic field. In a vacuum or plain matter they couple to one of the transversely polarized states of the photon. But in magnetized matter, they couple to both the transversely polarized state of photons (due to the emergence of a parity violating part of the photon self-energy contribution from magnetized matter). Being spin zero scalar, they could mix with spin zero longitudinal part of photons but they do not. A part of this work is directed towards understanding this issue of mixing the scalar with various polarization states of photons in a medium (magnetized or unmagnetized) due to the constraints from different discrete symmetries, e.g., charge conjugation (C), parity (P) and time reversal (T) associated with the interaction. Based on these symmetry aided arguments, the structure of the mixing matrix is found to be 3×3, as in the case of neutrino flavor mixing matrix. Thus there exists nonzero finite probabilities of oscillation between different polarization states of photon to dilaton. Our analytical and numerical analysis show no existence of periodic oscillation length either in temporal or spatial direction for the most general values of the parameters in the theory. Possible astrophysical consequences of these results can be detected through the discussed observations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 8 September 2021
  • Accepted 7 December 2022

DOI:https://doi.org/10.1103/PhysRevD.107.023008

© 2023 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & AstrophysicsParticles & Fields

Authors & Affiliations

Ankur Chaubey, Manoj K. Jaiswal, and Avijit K. Ganguly*

  • Institute of Science, Department of Physics, Banaras Hindu University, Varanasi 221005, India

  • *Corresponding author. avijitk@hotmail.com

See Also

Exploring scalar-photon interactions in energetic astrophysical events

Ankur Chaubey, Manoj K. Jaiswal, and Avijit K. Ganguly
Phys. Rev. D 102, 123029 (2020)

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 107, Iss. 2 — 15 January 2023

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review D

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×