Linearized Boltzmann-Langevin model for heavy quark transport in hot and dense QCD matter

Weiyao Ke, Yingru Xu, and Steffen A. Bass
Phys. Rev. C 98, 064901 – Published 5 December 2018

Abstract

In relativistic heavy-ion collisions, the production of heavy quarks at large transverse momenta is strongly suppressed compared to proton-proton collisions. In addition, an unexpectedly large azimuthal anisotropy was observed for the emission of charmed hadrons in noncentral collisions. Both observations pose challenges to the theoretical understanding of the coupling between heavy quarks and the quark-gluon plasma produced in these collisions. Transport models for the evolution of heavy quarks in a QCD medium offer the opportunity to study these effects; two of the most successful approaches are based on the linearized Boltzmann transport equation and the Langevin equation. In this work, we develop a hybrid transport model that combines the strengths of both of these approaches: Heavy quarks scatter with medium partons using matrix-elements calculated in perturbative QCD, while between these discrete hard scatterings they evolve using a Langevin equation with empirical transport coefficients to capture the nonperturbative soft part of the interaction. With the hybrid transport model coupled to a state-of-the-art event-by-event bulk evolution model based on 2+1D relativistic viscous fluid dynamics, we study the azimuthal anisotropy and nuclear modification factor of heavy quarks in Pb+Pb collisions at s=5.02 TeV. The parameters related to heavy-flavor transport are calibrated using a Bayesian analysis comparing them to available D-meson and B-meson data at the Large Hadron Collider. Using the calibrated model, we study the implications on heavy-flavor transport properties and predict observables.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
7 More
  • Received 2 July 2018

DOI:https://doi.org/10.1103/PhysRevC.98.064901

©2018 American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Weiyao Ke*, Yingru Xu, and Steffen A. Bass

  • Department of Physics, Duke University, Durham, North Carolina 27708-0305, USA

  • *wk42@phy.duke.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 6 — December 2018

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×