High-spin structure in the transitional nucleus Xe131: Competitive neutron and proton alignment in the vicinity of the N=82 shell closure

L. Kaya et al.
Phys. Rev. C 98, 014309 – Published 6 July 2018

Abstract

The transitional nucleus Xe131 is investigated after multinucleon transfer in the Xe136+Pb208 and Xe136+U238 reactions employing the high-resolution Advanced γ-Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and as an elusive reaction product in the fusion-evaporation reaction Sn124(B11,p3n)Xe131 employing the High-efficiency Observatory for γ-Ray Unique Spectroscopy (HORUS) γ-ray array coupled to a double-sided silicon strip detector at the University of Cologne, Germany. The level scheme of Xe131 is extended to 5 MeV. A pronounced backbending is observed at ω0.4MeV along the negative-parity one-quasiparticle νh11/2(α=1/2) band. The results are compared to the high-spin systematics of the Z=54 isotopes and the N=77 isotones. Large-scale shell-model calculations employing the PQM130, SN100PN, GCN50:82, SN100-KTH, and a realistic effective interaction reproduce the experimental findings and provide guidance to elucidate the structure of the high-spin states. Further calculations in Xe129132 provide insight into the changing nuclear structure along the Xe chain towards the N=82 shell closure. Proton occupancy in the π0h11/2 orbital is found to be decisive for the description of the observed backbending phenomenon.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 25 May 2018

DOI:https://doi.org/10.1103/PhysRevC.98.014309

©2018 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 98, Iss. 1 — July 2018

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×