• Open Access

Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

Wojciech Florkowski, Ewa Maksymiuk, and Radoslaw Ryblewski
Phys. Rev. C 97, 024915 – Published 28 February 2018

Abstract

Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
10 More
  • Received 27 October 2017

DOI:https://doi.org/10.1103/PhysRevC.97.024915

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Wojciech Florkowski

  • Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland and Institute of Physics, Jan Kochanowski University, PL-25406 Kielce, Poland

Ewa Maksymiuk

  • Institute of Physics, Jan Kochanowski University, PL-25406 Kielce, Poland

Radoslaw Ryblewski

  • Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 97, Iss. 2 — February 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×