Dynamical initial-state model for relativistic heavy-ion collisions

Chun Shen and Björn Schenke
Phys. Rev. C 97, 024907 – Published 15 February 2018

Abstract

We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy-ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a fluctuating time depending on sampled final rapidities. Energy is deposited in space time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directly from the initial-state model, including net-baryon rapidity distributions, two-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. We also present the implementation of the model with 3+1-dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial-state model at proper times greater than the initial time for the hydrodynamic simulation.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 13 October 2017

DOI:https://doi.org/10.1103/PhysRevC.97.024907

©2018 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Chun Shen and Björn Schenke

  • Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 97, Iss. 2 — February 2018

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×