Quantum-state-selective decay spectroscopy of Ra213

Ch. Lorenz, L. G. Sarmiento, D. Rudolph, D. E. Ward, M. Block, F. P. Heßberger, D. Ackermann, L.-L. Andersson, M. L. Cortés, C. Droese, M. Dworschak, M. Eibach, U. Forsberg, P. Golubev, R. Hoischen, I. Kojouharov, J. Khuyagbaatar, D. Nesterenko, I. Ragnarsson, H. Schaffner, L. Schweikhard, S. Stolze, and J. Wenzl
Phys. Rev. C 96, 034315 – Published 18 September 2017

Abstract

An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a Ca48 beam impinging on a thin Er170 target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the 5n evaporation channel Ra213 was mass-selected in SHIPTRAP, and the Ra213 ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 simulations and supported by theoretical calculations, the spectroscopic results call for a revision of the decay path of Ra213, thereby exemplifying the potential of a combination of a mass-selective Penning trap device with a dedicated nuclear decay station and contemporary geant4 simulations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 19 June 2017

DOI:https://doi.org/10.1103/PhysRevC.96.034315

©2017 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Ch. Lorenz1, L. G. Sarmiento1,2, D. Rudolph1, D. E. Ward1, M. Block3,4,5, F. P. Heßberger3,4, D. Ackermann3, L.-L. Andersson4,6, M. L. Cortés2,3,7, C. Droese8, M. Dworschak3, M. Eibach8,9,10, U. Forsberg1, P. Golubev1, R. Hoischen1,3, I. Kojouharov3, J. Khuyagbaatar3,4, D. Nesterenko3,11, I. Ragnarsson1, H. Schaffner3, L. Schweikhard8, S. Stolze3,12, and J. Wenzl10

  • 1Department of Physics, Lund University, S-22100 Lund, Sweden
  • 2Departamento de Física, Universidad Nacional de Colombia, CO-111321 Bogotá D.C., Colombia
  • 3GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
  • 4Helmholtz-Institut Mainz, D-55099 Mainz, Germany
  • 5Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany
  • 6Department of Physics, University of Liverpool, L69 7ZE Liverpool, United Kingdom
  • 7RIKEN Nishina Center, 2-1 Hirosawa, Wako, 351-0198 Saitama, Japan
  • 8Institut für Physik, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany
  • 9Institut für Physik, Johannes Gutenberg-Universität, D-55128 Mainz, Germany
  • 10National Superconducting Cyclotron Laboratory, East Lansing, 48824 Michigan, USA
  • 11Petersburg Nuclear Physics Institute, St. Petersburg, 188300 Leningradskaya oblast, Russia
  • 12Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 3 — September 2017

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×