Energy dependence of the prompt γ-ray emission from the (d,p)-induced fission of U*234 and Pu*240

S. J. Rose, F. Zeiser, J. N. Wilson, A. Oberstedt, S. Oberstedt, S. Siem, G. M. Tveten, L. A. Bernstein, D. L. Bleuel, J. A. Brown, L. Crespo Campo, F. Giacoppo, A. Görgen, M. Guttormsen, K. Hadyńska, A. Hafreager, T. W. Hagen, M. Klintefjord, T. A. Laplace, A. C. Larsen, T. Renstrøm, E. Sahin, C. Schmitt, T. G. Tornyi, and M. Wiedeking
Phys. Rev. C 96, 014601 – Published 5 July 2017

Abstract

Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the U(d,pf)233 reaction for excitation energies between 4.8 and 10 MeV, and for the Pu(d,pf)239 reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energy above the fission barrier, despite the fact that an extra 5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. Further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 19 December 2016

DOI:https://doi.org/10.1103/PhysRevC.96.014601

©2017 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

S. J. Rose1,*, F. Zeiser1,†, J. N. Wilson2, A. Oberstedt3, S. Oberstedt4, S. Siem1, G. M. Tveten1, L. A. Bernstein5,6, D. L. Bleuel7, J. A. Brown5, L. Crespo Campo1, F. Giacoppo1,‡, A. Görgen1, M. Guttormsen1, K. Hadyńska1, A. Hafreager1, T. W. Hagen1, M. Klintefjord1, T. A. Laplace6,7, A. C. Larsen1, T. Renstrøm1, E. Sahin1, C. Schmitt8, T. G. Tornyi1, and M. Wiedeking9

  • 1Department of Physics, University of Oslo, 0316 Oslo, Norway
  • 2Institut de Physique Nucléaire d'Orsay, CNRS/ Univ. Paris-Sud, Université Paris Saclay, 91406 Orsay Cedex, France
  • 3Extreme Light Infrastructure - Nuclear Physics (ELI-NP) / Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 077125 Bucharest-Magurele, Romania
  • 4European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Unit G.2 Standards for Nuclear Safety, Security and Safeguards, 2440 Geel, Belgium
  • 5Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
  • 6University of California - Berkeley Dept. of Nuclear Engineering, Berkeley California 94720, USA
  • 7Lawrence Livermore National Laboratory, Livermore, California 94551, USA
  • 8Grand Accélérateur National d'Ions Lourd, Bd Henri Becquerel, BP 55027 - 14076 CAEN Cedex 05, France
  • 9iThemba LABS, P.O. Box 722, 7129 Somerset West, South Africa

  • *sunniva.rose@fys.uio.no
  • fabio.zeiser@fys.uio.no
  • Present address: (a) Helmholtz Institute Mainz, 55099 Mainz, Germany; (b) GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany.

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 96, Iss. 1 — July 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×