Analytic properties of the quark propagator from an effective infrared interaction model

Andreas Windisch
Phys. Rev. C 95, 045204 – Published 21 April 2017
PDFHTMLExport Citation

Abstract

In this paper, I investigate the analytic properties of the quark propagator Dyson-Schwinger equation (DSE) in the Landau gauge. In the quark self-energy, the combined gluon propagator and quark-gluon vertex is modeled by an effective interaction (the so-called Maris-Tandy interaction), where the ultraviolet term is neglected. This renders the loop integrand of the quark self-energy analytic on the cut plane π<arg(x)<π of the square of the external momentum. Exploiting the simplicity of the truncation, I study solutions of the quark propagator in the domain x[5.1,0]GeV2×i[0,10.2]GeV2. Because of a complex conjugation symmetry, this region fully covers the parabolic integration domain for Bethe-Salpeter equations (BSEs) for bound state masses of up to 4.5 GeV. Employing a novel numerical technique that is based on highly parallel computation on graphics processing units (GPUs), I extract more than 6500 poles in this region, which arise as the bare quark mass is varied over a wide range of closely spaced values. The poles are grouped in 23 individual trajectories that capture the movement of the poles in the complex region as the bare mass is varied. The raw data of the pole locations and residues is provided as Supplemental Material, which can be used to parametrize solutions of the complex quark propagator for a wide range of bare mass values and for large bound-state masses. This study is a first step towards an extension of previous work on the analytic continuation of perturbative one-loop integrals, with the long-term goal of establishing a framework that allows for the numerical extraction of the analytic properties of the quark propagator with a truncation that extends beyond the rainbow by making adequate adjustments in the contour of the radial integration of the quark self-energy.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 31 December 2016

DOI:https://doi.org/10.1103/PhysRevC.95.045204

©2017 American Physical Society

Physics Subject Headings (PhySH)

Nuclear PhysicsParticles & Fields

Authors & Affiliations

Andreas Windisch*

  • Department of Physics, Washington University, St. Louis, Missouri 63130, USA

  • *windisch@physics.wustl.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 4 — April 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×