Chiral vortical and magnetic effects in the anomalous transport model

Yifeng Sun and Che Ming Ko
Phys. Rev. C 95, 034909 – Published 23 March 2017

Abstract

We extend our recent study of chiral magnetic effect in relativistic heavy ion collisions based on an anomalous transport model by including also the chiral vortical effect. We find that although vorticities in the chirally restored quark matter, which result from the large angular momentum in noncentral collisions, can generate an axial charge dipole moment in the transverse plane of a heavy ion collision, it does not produce a difference in the eccentricities of negatively and positively charged particles. As a result, including the chiral vortical effect alone cannot lead to a splitting between the elliptic flows of negatively and positively charged particles. On the other hand, negatively and positively charged particles do develop a splitting in their elliptic flows if the effect due to a strong and long-lived magnetic field is also included. However, to have a positive slope in the dependence of the elliptic flow splitting on the charge asymmetry of the quark matter, as seen in experiments, requires the neglect of the effect of the Lorentz force. In this case, an elliptic flow splitting appears even at vanishing charge asymmetry.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 9 December 2016

DOI:https://doi.org/10.1103/PhysRevC.95.034909

©2017 American Physical Society

Physics Subject Headings (PhySH)

Nuclear PhysicsParticles & Fields

Authors & Affiliations

Yifeng Sun* and Che Ming Ko

  • Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA

  • *sunyfphy@physics.tamu.edu
  • ko@comp.tamu.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 95, Iss. 3 — March 2017

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×