Completing the nuclear reaction puzzle of the nucleosynthesis of Mo92

G. M. Tveten, A. Spyrou, R. Schwengner, F. Naqvi, A. C. Larsen, T. K. Eriksen, F. L. Bello Garrote, L. A. Bernstein, D. L. Bleuel, L. Crespo Campo, M. Guttormsen, F. Giacoppo, A. Görgen, T. W. Hagen, K. Hadynska-Klek, M. Klintefjord, B. S. Meyer, H. T. Nyhus, T. Renstrøm, S. J. Rose, E. Sahin, S. Siem, and T. G. Tornyi
Phys. Rev. C 94, 025804 – Published 22 August 2016

Abstract

One of the greatest questions for modern physics to address is how elements heavier than iron are created in extreme astrophysical environments. A particularly challenging part of that question is the creation of the so-called p-nuclei, which are believed to be mainly produced in some types of supernovae. The lack of needed nuclear data presents an obstacle in nailing down the precise site and astrophysical conditions. In this work, we present for the first time measurements on the nuclear level density and average γ strength function of Mo92. State-of-the-art p-process calculations systematically underestimate the observed solar abundance of this isotope. Our data provide stringent constraints on the Nb91(p,γ)Mo92 reaction rate, which is the last unmeasured reaction in the nucleosynthesis puzzle of Mo92. Based on our results, we conclude that the Mo92 abundance anomaly is not due to the nuclear physics input to astrophysical model calculations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 13 May 2016
  • Revised 21 July 2016

DOI:https://doi.org/10.1103/PhysRevC.94.025804

©2016 American Physical Society

Physics Subject Headings (PhySH)

Gravitation, Cosmology & AstrophysicsNuclear Physics

Authors & Affiliations

G. M. Tveten1,*, A. Spyrou2,3,4, R. Schwengner5, F. Naqvi2,4, A. C. Larsen1, T. K. Eriksen1,6, F. L. Bello Garrote1, L. A. Bernstein7, D. L. Bleuel7, L. Crespo Campo1, M. Guttormsen1, F. Giacoppo1,8,9, A. Görgen1, T. W. Hagen1, K. Hadynska-Klek1,10, M. Klintefjord1, B. S. Meyer11, H. T. Nyhus1, T. Renstrøm1, S. J. Rose1, E. Sahin1, S. Siem1, and T. G. Tornyi6

  • 1Department of Physics, University of Oslo, NO-0316 Oslo, Norway
  • 2National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
  • 3Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
  • 4Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
  • 5Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
  • 6Department of Nuclear Physics, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
  • 7Lawrence Livermore National Laboratory, Livermore, California 94551, USA
  • 8Helmholtz Institute Mainz, 55099 Mainz, Germany
  • 9GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
  • 10INFN, Laboratori Nazionali di Legnaro Padova, 35020 Legnaro, Italy
  • 11Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA

  • *g.m.tveten@fys.uio.no

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 2 — August 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×