Participant and spectator scaling of spectator fragments in Au + Au and Cu + Cu collisions at sNN=19.6 and 22.4 GeV

B. Alver et al. (PHOBOS Collaboration)
Phys. Rev. C 94, 024903 – Published 2 August 2016

Abstract

Spectator fragments resulting from relativistic heavy ion collisions, consisting of single protons and neutrons along with groups of stable nuclear fragments up to nitrogen (Z=7), are measured in PHOBOS. These fragments are observed in Au+Au (sNN=19.6GeV) and Cu+Cu (22.4 GeV) collisions at high pseudorapidity (η). The dominant multiply-charged fragment is the tightly bound helium (α), with lithium, beryllium, and boron all clearly seen as a function of collision centrality and pseudorapidity. We observe that in Cu+Cu collisions, it becomes much more favorable for the α fragments to be released than lithium. The yields of fragments approximately scale with the number of spectator nucleons, independent of the colliding ion. The shapes of the pseudorapidity distributions of fragments indicate that the average deflection of the fragments away from the beam direction increases for more central collisions. A detailed comparison of the shapes for α and lithium fragments indicates that the centrality dependence of the deflections favors a scaling with the number of participants in the collision.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
12 More
  • Received 30 November 2015

DOI:https://doi.org/10.1103/PhysRevC.94.024903

©2016 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 94, Iss. 2 — August 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×