Low-energy enhancement in the γ-ray strength functions of Ge73,74

T. Renstrøm, H.-T. Nyhus, H. Utsunomiya, R. Schwengner, S. Goriely, A. C. Larsen, D. M. Filipescu, I. Gheorghe, L. A. Bernstein, D. L. Bleuel, T. Glodariu, A. Görgen, M. Guttormsen, T. W. Hagen, B. V. Kheswa, Y.-W. Lui, D. Negi, I. E. Ruud, T. Shima, S. Siem, K. Takahisa, O. Tesileanu, T. G. Tornyi, G. M. Tveten, and M. Wiedeking
Phys. Rev. C 93, 064302 – Published 2 June 2016

Abstract

The γ-ray strength functions and level densities of Ge73,74 have been extracted up to the neutron-separation energy Sn from particle-γ coincidence data using the Oslo method. Moreover, the γ-ray strength function of Ge74 above Sn has been determined from photoneutron measurements; hence these two experiments cover the range of Eγ1–13 MeV for Ge74. The obtained data show that both Ge73,74 display an increase in strength at low γ energies. The experimental γ-ray strength functions are compared with M1 strength functions deduced from average B(M1) values calculated within the shell model for a large number of transitions. The observed low-energy enhancements in Ge73,74 are adopted in the calculations of the Ge72,73(n,γ) cross sections, where there are no direct experimental data. Calculated reaction rates for more neutron-rich germanium isotopes are shown to be strongly dependent on the presence of the low-energy enhancement.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 18 October 2015
  • Revised 14 March 2016

DOI:https://doi.org/10.1103/PhysRevC.93.064302

©2016 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

T. Renstrøm1,*, H.-T. Nyhus1, H. Utsunomiya2, R. Schwengner3, S. Goriely4, A. C. Larsen1, D. M. Filipescu5,6, I. Gheorghe5, L. A. Bernstein7, D. L. Bleuel7, T. Glodariu6, A. Görgen1, M. Guttormsen1, T. W. Hagen1, B. V. Kheswa8, Y.-W. Lui9, D. Negi8,10, I. E. Ruud1, T. Shima11, S. Siem1, K. Takahisa11, O. Tesileanu5, T. G. Tornyi1,12, G. M. Tveten1, and M. Wiedeking8

  • 1Department of Physics, University of Oslo, N-0316 Oslo, Norway
  • 2Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501, Japan
  • 3Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
  • 4Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Campus de la Plaine, CP-226, 1050 Brussels, Belgium
  • 5ELI-NP, “Horia Hulubei” National Institute for Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului, 077125 Bucharest-Magurele, Romania
  • 6“Horia Hulubei” National Institute for Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului, 077125 Bucharest-Magurele, Romania
  • 7Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550-9234, USA
  • 8iThemba LABS, P.O. Box 722, 7129 Somerset West, South Africa
  • 9Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
  • 10Centre for Excellence in Basic Sciences, Vidyanagari Campus, Mumbai 400098, India
  • 11Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047, Japan
  • 12Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen, Hungary

  • *therese.renstrom@fys.uio.no

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 6 — June 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×