Hybrid stars using the quark-meson coupling and proper-time Nambu–Jona-Lasinio models

D. L. Whittenbury, H. H. Matevosyan, and A. W. Thomas
Phys. Rev. C 93, 035807 – Published 28 March 2016

Abstract

Background: At high density deconfinement of hadronic matter may occur leading to quark matter. The immense densities reached in the inner core of massive neutron stars may be sufficient to facilitate the transition.

Purpose: To investigate a crossover transition between two phenomenological models which epitomize quantum chromodynamics in two different regimes, while incorporating the influence of quark degrees of freedom in both.

Method: We use the Hartree-Fock quark-meson coupling model and the proper-time regularized three-flavor Nambu–Jona-Lasinio model to describe hadronic and quark matter, respectively. Hybrid equations of state are obtained by interpolating the energy density as a function of total baryonic density and calculating the pressure.

Results: Equations of state for hadronic, quark, and hybrid matter and the resulting mass versus radius curves for hybrid stars are shown, as well as other relevant physical quantities such as species fractions and the speed of sound in matter.

Conclusions: The observations of massive neutron stars can certainly be explained within such a construction. However, the so-called thermodynamic correction arising from an interpolation method can have a considerable impact on the equation of state. The interpolation dependency of and physical meaning behind such corrections require further study.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 1 December 2015

DOI:https://doi.org/10.1103/PhysRevC.93.035807

©2016 American Physical Society

Physics Subject Headings (PhySH)

Particles & FieldsGravitation, Cosmology & AstrophysicsStatistical Physics & ThermodynamicsNuclear Physics

Authors & Affiliations

D. L. Whittenbury*, H. H. Matevosyan, and A. W. Thomas

  • CSSM and ARC Centre of Excellence for Particle Physics at the Terascale, and School of Physical Sciences, University of Adelaide, Adelaide SA 5005, Australia

  • *daniel.whittenbury@adelaide.edu.au

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 3 — March 2016

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×