Single electron yields from semileptonic charm and bottom hadron decays in Au+Au collisions at sNN=200 GeV

A. Adare et al. (PHENIX Collaboration)
Phys. Rev. C 93, 034904 – Published 7 March 2016

Abstract

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au+Au collisions at sNN=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au+Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p+p collisions at sNN=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4GeV/c. We use the bottom electron fractions in Au+Au and p+p along with the previously measured heavy flavor electron RAA to calculate the RAA for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3<pT<4GeV/c.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
16 More
  • Received 5 October 2015

DOI:https://doi.org/10.1103/PhysRevC.93.034904

©2016 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 3 — March 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×