Forward J/ψ production in U + U collisions at sNN=193 GeV

A. Adare et al. (PHENIX Collaboration)
Phys. Rev. C 93, 034903 – Published 3 March 2016

Abstract

The invariant yields, dN/dy, for J/ψ production at forward rapidity (1.2<|y|<2.2) in U+U collisions at sNN=193GeV have been measured as a function of collision centrality. The invariant yields and nuclear-modification factor RAA are presented and compared with those from Au+Au collisions in the same rapidity range. Additionally, the direct ratio of the invariant yields from U+U and Au+Au collisions within the same centrality class is presented, and used to investigate the role of cc¯ coalescence. Two different parametrizations of the deformed Woods-Saxon distribution were used in Glauber calculations to determine the values of the number of nucleon-nucleon collisions in each centrality class, Ncoll, and these were found to give significantly different Ncoll values. Results using Ncoll values from both deformed Woods-Saxon distributions are presented. The measured ratios show that the J/ψ suppression, relative to binary collision scaling, is similar in U+U and Au+Au for peripheral and midcentral collisions, but that J/ψ show less suppression for the most central U+U collisions. The results are consistent with a picture in which, for central collisions, increase in the J/ψ yield due to cc¯ coalescence becomes more important than the decrease in yield due to increased energy density. For midcentral collisions, the conclusions about the balance between cc¯ coalescence and suppression depend on which deformed Woods-Saxon distribution is used to determine Ncoll.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 5 October 2015

DOI:https://doi.org/10.1103/PhysRevC.93.034903

©2016 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 3 — March 2016

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×