• Rapid Communication

Elastic nucleon-nucleus scattering as a direct probe of correlations beyond the independent-particle model

H. Dussan, M. H. Mahzoon, R. J. Charity, W. H. Dickhoff, and A. Polls
Phys. Rev. C 90, 061603(R) – Published 22 December 2014

Abstract

Employing a recently developed dispersive optical model (DOM) which allows a complete description of experimental data both above (up to 200 MeV) and below the Fermi energy in Ca40, we demonstrate that elastic nucleon-nucleus scattering data constrain the spectral strength in the continuum of orbits that are nominally bound in the independent-particle model (IPM). In the energy domain between 0 and 200 MeV, the integrated strength or depletion number is highly sensitive to the separation of the IPM orbit to the scattering continuum. This sensitivity is determined by the influence of the surface-absorption properties of the DOM self-energy. For an ab initio calculation employing the self-energy of the charge-dependent Bonn (CDBonn) interaction which only includes the effect of short-range correlations, no such sensitivity is obtained and a depletion of 4% is predicted between 0 and 200 MeV irrespective of the orbit. The ab initio spectral strength generated with the CDBonn interaction approaches the empirical DOM spectral strength at 200 MeV. Both spectral distributions allow for an additional 3–5% of the strength at even higher energies which is associated with the influence of short-range correlations. We suggest that the nonlocal form of the DOM allows for an analysis of elastic-nucleon-scattering data that directly determines the depletion of bound orbits. While obviously relevant for the analysis of elastic nucleon scattering on stable targets, this conclusion holds equally well for experiments involving rare isotopes in inverse kinematics as well as experiments with electrons on atoms or molecules.

  • Figure
  • Figure
  • Figure
  • Received 9 October 2014

DOI:https://doi.org/10.1103/PhysRevC.90.061603

©2014 American Physical Society

Authors & Affiliations

H. Dussan1, M. H. Mahzoon1, R. J. Charity2, W. H. Dickhoff1, and A. Polls3

  • 1Department of Physics, Washington University, St. Louis, Missouri 63130, USA
  • 2Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
  • 3Departament d'Estructura i Constituents de la Matèria and Institut de Ciènces del Cosmos, Universitat de Barcelona, Avenida Diagonal 647, E-8028 Barcelona, Spain

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 6 — December 2014

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×