Corrections to the eikonal approximation for nuclear scattering at medium energies

Micah Buuck and Gerald A. Miller
Phys. Rev. C 90, 024606 – Published 11 August 2014

Abstract

The upcoming Facility for Rare Isotope Beams (FRIB) at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University has reemphasized the importance of accurate modeling of low energy nucleus-nucleus scattering. Such calculations have been simplified by using the eikonal approximation. As a high energy approximation, however, its accuracy suffers for the medium energy beams that are of current experimental interest. A prescription developed by Wallace [Phys. Rev. Lett. 27, 622 (1971) and Ann. Phys. (NY) 78, 190 (1973)] that obtains the scattering propagator as an expansion around the eikonal propagator (Glauber approach) has the potential to extend the range of validity of the approximation to lower energies. Here we examine the properties of this expansion, and calculate the first-, second-, and third-order corrections for the scattering of a spinless particle off of a Ca40 nucleus, and for nuclear breakup reactions involving Be11. We find that, including these corrections extends the lower bound of the range of validity down to energies as low as about 45 MeV. At that energy the corrections provide as much as a 15% correction to certain processes.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 18 June 2014

DOI:https://doi.org/10.1103/PhysRevC.90.024606

©2014 American Physical Society

Authors & Affiliations

Micah Buuck and Gerald A. Miller

  • Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 90, Iss. 2 — August 2014

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×