Collectivity of neutron-rich Ti isotopes

H. Suzuki et al.
Phys. Rev. C 88, 024326 – Published 30 August 2013

Abstract

The structure of the neutron-rich nucleus 58Ti was investigated via proton inelastic scattering in inverse kinematics at a mean energy of 42.0 MeV/nucleon. By measuring the deexcitation γ rays, three transitions with the energies of 1046(11) keV, 1376(18) keV, and 1835(27) keV were identified. The angle-integrated cross section for the 1046-keV excitation, which corresponds to the decay from the first 2+ state, was determined to be 13(7) mb. The deformation length δp,p was extracted from the cross section to be 0.830.30+0.22 fm. The energy of the first 2+ state and the δp,p value are comparable to the ones of 56Ti, which indicates that the collectivity of the Ti isotopes does not increase significantly with neutron number until N=36. This fact indicates that 58Ti is outside of the region of the deformation known in the neutron-rich nuclei around N=40.

  • Figure
  • Figure
  • Figure
  • Received 13 April 2012

DOI:https://doi.org/10.1103/PhysRevC.88.024326

©2013 American Physical Society

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 2 — August 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×