Experimental study of the collision 11Be + 64Zn around the Coulomb barrier

A. Di Pietro et al.
Phys. Rev. C 85, 054607 – Published 4 May 2012

Abstract

In this paper details of the experimental procedure and data analysis of the collision of 11Be+64Zn around the Coulomb barrier are described and discussed in the framework of different theoretical approaches. In a previous work [A. Di Pietro et al., Phys. Rev. Lett. 105, 022701 (2010).], the elastic scattering angular distribution of the collisions 9,10Be+64Zn as well as the angular distribution for the quasielastic scattering and transfer/breakup cross sections for the 11Be+64Zn reaction were briefly reported. The suppression of the quasielastic angular distribution in the Coulomb-nuclear interference angular region observed in the collision of the 11Be halo nucleus with respect to the other two beryllium isotopes was interpreted as being caused by a long-range absorption owing to the long decay length of the 11Be wave function. In this paper, new continuum-discretized coupled-channel calculations of the 11Be+64Zn reaction are reported in the attempt to interpret the effect of coupling with the breakup channels on the measured cross sections. The calculations show that the observed suppression of the Coulomb-nuclear interference peak is caused by a combined effect of Coulomb and nuclear couplings to the breakup channels.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
6 More
  • Received 3 February 2012

DOI:https://doi.org/10.1103/PhysRevC.85.054607

©2012 American Physical Society

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 85, Iss. 5 — May 2012

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×