Ground state energy at unitarity

Dean Lee
Phys. Rev. C 78, 024001 – Published 13 August 2008

Abstract

We consider two-component fermions on the lattice in the unitarity limit. This is an idealized limit of attractive fermions where the range of the interaction is zero and the scattering length is infinite. Using Euclidean time projection, we compute the ground state energy using four computationally different but physically identical auxiliary-field methods. The best performance is obtained using a bounded continuous auxiliary field and a nonlocal updating algorithm called the hybrid Monte Carlo. With this method, we calculate results for 10 and 14 fermions at lattice volumes 43,53,63,73,83 and extrapolate to the continuum limit. For 10 fermions in a periodic cube, the ground state energy is 0.292(12) times the ground state energy for noninteracting fermions. For 14 fermions, the ratio is 0.329(5).

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
3 More
  • Received 14 March 2008

DOI:https://doi.org/10.1103/PhysRevC.78.024001

©2008 American Physical Society

Authors & Affiliations

Dean Lee

  • Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 78, Iss. 2 — August 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×