Jet-hadron correlations with respect to the event plane in sNN=200 GeV Au+Au collisions in STAR

M. I. Abdulhamid et al. (STAR Collaboration)
Phys. Rev. C 109, 044909 – Published 9 April 2024

Abstract

Angular distributions of charged particles relative to jet axes are studied in sNN=200 GeV Au+Au collisions as a function of the jet orientation with respect to the event plane. This differential study tests the expected path-length dependence of energy loss experienced by a hard-scattered parton as it traverses the hot and dense medium formed in heavy-ion collisions. A second-order event plane is used in the analysis as an experimental estimate of the reaction plane formed by the collision impact parameter and the beam direction. Charged-particle jets with 15<pT,jet<20 and 20<pT,jet<40GeV/c were reconstructed with the anti-kT algorithm with radius parameter setting of R=0.4 in the 20–50% centrality bin to maximize the initial-state eccentricity of the interaction region. The reaction plane fit method is implemented to remove the flow-modulated background with better precision than prior methods. Yields and widths of jet-associated charged-hadron distributions are extracted in three angular bins between the jet axis and the event plane. The event-plane (EP) dependence is further quantified by ratios of the associated yields in different EP bins. No dependence on orientation of the jet axis with respect to the event plane is seen within the uncertainties in the kinematic regime studied. This finding is consistent with a similar experimental observation by ALICE in sNN = 2.76 TeV Pb-Pb collision data.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 25 July 2023
  • Revised 19 December 2023
  • Accepted 2 February 2024

DOI:https://doi.org/10.1103/PhysRevC.109.044909

©2024 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 109, Iss. 4 — April 2024

Reuse & Permissions
Access Options
CHORUS

Article part of CHORUS

Accepted manuscript will be available starting 9 April 2025.
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×