Observation of an ultralow-Q-value electron-capture channel decaying to As75 via a high-precision mass measurement

M. Ramalho, Z. Ge, T. Eronen, D. A. Nesterenko, J. Jaatinen, A. Jokinen, A. Kankainen, J. Kostensalo, J. Kotila, M. I. Krivoruchenko, J. Suhonen, K. S. Tyrin, and V. Virtanen
Phys. Rev. C 106, 015501 – Published 5 July 2022

Abstract

A precise determination of the atomic mass of As75 has been performed utilizing the double Penning trap mass spectrometer, JYFLTRAP. The mass excess is measured to be 73035.519(42)keV/c2, which is a factor of 21 more precise and 1.3(9)keV/c2 lower than the adopted value in the newest Atomic Mass Evaluation (AME2020). This value has been used to determine the ground-state–to–ground-state electron-capture decay Q value of Se75 and β decay Q value of Ge75, which are derived to be 866.041(81) keV and 1178.561(65) keV, respectively. Using the nuclear energy-level data of 860.00(40) keV, 865.40(50) keV (final states of electron capture), and 1172.00(60) keV (final state of β decay) for the excited states of As*75, we have determined the ground-state–to–excited-state Q values for two transitions of Se75As*75 and one transition of Ge75As*75. The ground-state–to–excited-state Q values are determined to be 6.04(41) keV, 0.64(51) keV, and 6.56(60) keV, respectively, thus confirming that the three low Q-value transitions are all energetically valid and one of them is a possible candidate channel for antineutrino mass determination. Furthermore, the ground-state–to–excited-state Q value of transition Se75As*75 [865.40(50) keV] is revealed to be ultralow (<1 keV) and the first-ever confirmed electron capture transition possessing an ultralow Q value from direct measurements.

  • Figure
  • Figure
  • Figure
  • Received 1 March 2022
  • Accepted 13 June 2022

DOI:https://doi.org/10.1103/PhysRevC.106.015501

©2022 American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

M. Ramalho1,*, Z. Ge1,†, T. Eronen1, D. A. Nesterenko1, J. Jaatinen1, A. Jokinen1, A. Kankainen1, J. Kostensalo2, J. Kotila1,3,4, M. I. Krivoruchenko5,6, J. Suhonen1,‡, K. S. Tyrin5, and V. Virtanen1

  • 1Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
  • 2Natural Resources Institute Finland, Yliopistokatu 6B, FI-80100, Joensuu, Finland
  • 3Finnish Institute for Educational Research, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
  • 4Center for Theoretical Physics, Sloane Physics Laboratory Yale University, New Haven, Connecticut 06520-8120, USA
  • 5National Research Center “Kurchatov Institute” -KCTEP, B. Cheremushkinskaya 25, 117218, Moscow, Russia
  • 6Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, B. Cheremushkinskaya 25, 117218 Moscow, Russia

  • *Corresponding author: madeoliv@jyu.fi
  • Corresponding author: z.ge@gsi.de; Present address: GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany.
  • Corresponding author: jouni.t.suhonen@jyu.fi

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 106, Iss. 1 — July 2022

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×